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Abstract

This study investigates momentum effects in South Korea’s housing market using a unique 
monthly transaction-level dataset covering seven major metropolitan areas from 2010 to 
2023. We employ a Bayesian hierarchical model that captures regional heterogeneity at both 
the city and district levels. The results reveal that while the national average momentum 
effect is mean-reverting, certain regions, most notably Seoul, exhibit relatively strong, 
localized positive momentum in housing price changes. These findings challenge the blanket 
applicability of momentum effects and highlight the spatial complexity of housing market 
dynamics. We further simulate momentum-based investment strategies under realistic 
market friction, including capital gains taxes, transaction fees, and short-selling constraints. 
These strategies consistently yield negative or negligible returns, suggesting that existing 
institutional frictions act as effective brakes for speculative behavior. From a policy 
perspective, our findings underscore the need for regionally tailored interventions that 
reflect local market conditions rather than relying on one-size-fits-all approaches.
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Ⅰ. Introduction

The dynamics of housing markets have become increasingly significant in economic 
research and policymaking due to their profound implications for financial stability, 
wealth distribution, and urban development in South Korea. Momentum effects, 
which refer to the persistence of past price trends influencing future prices, have 
been extensively documented in various asset markets, including equities (Jegadeesh 
& Titman, 1993). However, the presence and impact of momentum effects in housing 
markets remain an area of active investigation, particularly in East Asian economies 
like South Korea. Existing research on housing market dynamics has primarily focused 
on developed Western markets, particularly the United States (Case & Shiller, 1989; 
Piazzesi & Schneider, 2009), leaving a gap in understanding how momentum manifests 
in South Korea’s unique housing context. This study seeks to address this gap by 
investigating the factors that drive housing price movements in South Korea, including 
regional heterogeneity.

Understanding momentum effects in housing prices is crucial for policymakers 
and investors due to the far-reaching implications for market stability and wealth 
distribution. Previous studies, such as Piazzesi & Schneider (2009), have demonstrated 
the role of momentum traders in driving price cycles in the U.S. housing market, 
leading to price booms and busts. The risk associated with momentum effects is 
further exacerbated in markets with high household debt levels, as shown by Glaeser 
& Nathanson (2015), who emphasized how momentum traders can inflate housing 
bubbles with severe economic consequences when they burst. South Korea’s housing 
market, characterized by significant household debt tied to real estate, represents 
a critical environment for exploring these dynamics. South Korea’s household 
debt-to-GDP ratio has consistently been among the highest in the world, raising 
concerns about the potential impact of momentum-driven price cycles on household 
wealth and financial stability.

The presence of momentum effects in housing prices also raises important questions 
about the efficiency of real estate markets. According to the efficient market 
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hypothesis (EMH), asset prices should fully reflect all available information, implying 
that future price movements are unpredictable and follow a random walk (Fama, 
1970). However, the detection of momentum effects, where past price trends can 
predict future price movements, suggests a deviation from market efficiency. In 
housing markets, several studies have documented such inefficiencies. For instance, 
Case & Shiller (1989) found that U.S. housing markets exhibit mean-reverting behavior 
over the long term, suggesting that prices do not always reflect fundamental values. 
Similarly, Poterba (1991) provided evidence that U.S. cities often experience price 
trends that persist for several years before correcting, indicating a potential lag 
in the incorporation of new information. In the context of South Korea, our findings 
that some regions exhibit strong local momentum effects while others show tendencies 
toward mean reversion further challenge the assumption of market efficiency. These 
dynamics imply that local market conditions, transaction costs, and policy 
interventions may contribute to inefficiencies, creating opportunities for strategic 
investment but also heightening the risk of price bubbles and subsequent corrections. 
Thus, understanding the dynamics and triggers behind deviations of housing markets 
from EMH can offer valuable insights for policymakers and investors in navigating 
these complex market environments.

In South Korea, the study of momentum effects in housing prices is still emerging, 
with limited research exploring the regional differences in market behavior. Previous 
studies, such as the work by Choi (2024),1) have explored regional variations in 
housing markets but have largely focused on price indices rather than transaction-level 
data. Using monthly, transaction-level data, this study offers a more granular 
perspective on South Korea’s housing price dynamics—an approach largely absent 
from the existing literature. Unlike prior research that relies on aggregate price 
indices, this study captures market nuances, including the influence of transaction 
volume and price volatility on housing price momentum. Our findings provide new 

1) This study examines momentum effects in the apartment price indices for 25 
districts in Seoul and finds a significant short-term momentum effect that either 
dissipates or reverses in the long term.
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insights into the spatial and temporal variability of momentum effects. In particular, 
when combining the national-level average effect with city-level deviations, the overall 
momentum effect tends to be weak, suggesting a tendency toward mean reversion 
in housing prices. However, this aggregate pattern masks significant regional 
variation. In certain cities such as Seoul, local momentum effects are relatively strong 
and partially counteract the national mean-reverting trend, leading to more persistent
—but not fully momentum-driven—price dynamics in those areas. This underscores 
the importance of accounting for spatial heterogeneity when analyzing housing market 
behavior, as regional deviations may meaningfully shape local market trajectories 
even when national trends point toward mean reversion.

In terms of methodology, this study employs various model specifications to explore 
the factors influencing housing price trends in Korea, ranging from simple baseline 
models to more comprehensive ones that consider regional effects and market 
activity-related information. Specifically, to capture regional heterogeneity, we 
implement a Bayesian multilevel hierarchical approach, allowing us to model the 
variations in momentum effects across cities and districts. This approach aligns with 
the recommendations of Fingleton (2008) and Meen (2001) on the necessity of 
accounting for spatial differences in housing markets. The Bayesian hierarchical 
model results indicate that city-level momentum effects vary substantially across 
different regions in South Korea, with Seoul displaying strong positive momentum, 
while cities like Daegu and Incheon exhibit tendencies toward price correction. 
District-level characteristics, such as proximity to central business districts and 
infrastructure development, also significantly impact momentum effects. These 
findings suggest that regional differences in market dynamics are a key driver of 
housing price movements in South Korea.

A novel contribution of this study is the simulation of momentum strategies under 
various investment horizons, incorporating real-world frictions such as taxes and 
transaction fees. While earlier studies on momentum strategies in housing markets 
(Clayton, 1997) and recent work on local market conditions (Gao et al., 2020) have 
offered valuable insights, they often overlook the impact of transaction costs and 
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taxes. Our analysis provides a more realistic assessment of momentum-based investing 
in the Korean housing market by simulating strategies with different formation and 
holding periods. The simulation results reveal that the momentum strategy’s 
effectiveness is significantly constrained when accounting for market frictions. 
Negative returns are observed consistently across various combinations of formation 
and holding periods, with the most pronounced losses occurring in short formation 
and holding periods. This outcome suggests that frequent trading in the Korean 
housing market is not viable due to the high transaction costs and tax burdens that 
erode potential profits.

By filling a gap in the existing literature and providing a comprehensive analysis 
of momentum effects in the South Korean housing market, this study aims to offer 
valuable insights for policymakers, investors, and researchers seeking to understand 
the complexities of housing price dynamics and develop targeted policies to mitigate 
risks associated with market volatility and high household debt levels.

To achieve these objectives, the study is structured around the following research 
questions:

1. Do housing price changes in South Korea exhibit momentum or mean-reversion 
dynamics, and how do these effects vary across cities and districts?

2. What is the predictive performance of hierarchical models that incorporate 
city- and district-level heterogeneity in momentum effects?

3. Can momentum-based investment strategies in the Korean housing market deliver 
positive returns once real-world frictions (e.g., taxes, fees, no short-selling) 
are accounted for?

These questions are addressed through the formulation of the following testable 
hypotheses:

- H1: Housing price changes in South Korea exhibit significant regional variation 
in momentum dynamics, with some areas showing local persistence and 
others mean reversion.

- H2: A hierarchical Bayesian model incorporating city- and district-level random 
effects provides superior predictive accuracy over simpler models.
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- H3: Momentum-based trading strategies fail to produce excess returns under 
realistic tax and transaction cost constraints.

The remainder of this paper is structured as follows: Section 2 outlines the 
methodology, including the hierarchical models and identification strategy used to 
capture city- and district-level effects. Section 3 describes the data, emphasizing 
the use of monthly transaction-level information and the inclusion of various control 
variables. Section 4 presents the empirical results, examining the impact of city- 
and district-level characteristics on housing price momentum. Section 5 discusses 
the simulation of momentum strategies under different market conditions, 
highlighting the influence of taxes and fees on strategy performance. Finally, Section 
6 concludes with a discussion of the study’s policy implications, limitations, and 
potential avenues for future research.

II. Methodology

In this study, we employ a Bayesian hierarchical model to investigate price 
momentum in South Korea’s apartment market while accounting for regional 
heterogeneity at the city and district levels. This approach is motivated by the need 
to capture the variation in how different local housing markets respond to recent 
price changes, which may be influenced by diverse economic conditions, regulatory 
environments, and market liquidity. By incorporating random slopes across spatial 
levels, our model builds on the tradition of multilevel modeling in housing economics 
and provides a more granular perspective on local momentum patterns.

1. Model Specification

The core econometric model is defined as follows:

          ϵ (1)
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Where:
-  denotes the monthly rate of change in the price of apartment unit , located 

in district  of city , during month . Price changes are computed as log differences 
of transaction prices per exclusive area between months:   log  
log    where  denotes transaction price per unit of exclusive area.

-   is the one-month lagged value of the housing price change, which serves 

as the core momentum variable. A positive coefficient on this term indicates 
persistence in price dynamics—i.e., that an increase (or decrease) in price last 
month tends to be followed by another increase (or decrease) this month. In 
particular, if the coefficient on   approaches 1, it suggests a high degree 

of persistence, meaning that past price changes almost fully carry over into 
the current period. Conversely, a coefficient close to zero implies little or no 
temporal dependence.

-  is the model intercept representing the average monthly rate of housing price 

change across all units and regions.
-  captures the national average momentum effect, i.e., the degree to which 

past price changes predict current ones on average. It can be also interpreted 
as the approximate percentage point change in the current month’s rate of 
price change associated with a 1% change in the previous month’s rate of change 
(i.e., the approximate national-level elasticity with respect to the previous month’s 
housing price change rate).

-  and  denote city-level and district-level momentum effects, respectively, 

which modify the local responsiveness to lagged price changes (i.e., approximate 
elasticity at the city-level and the district-level, respectively, in response to past 
month’s housing price change rate). These capture unobserved regional 
heterogeneity in the persistence of price movements.

-  measures the number of transactions involving unit  during month . This 

serves as a proxy for market liquidity in that specific building or complex.
-  captures the price volatility for unit  in month , measured as the SD of 

transaction prices across all sales of unit  during that month.
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- ϵ is an idiosyncratic error term assumed to follow an i.i.d. normal distribution: 

ϵ∼ .
All variables are aligned on a monthly basis, and the time index  corresponds 

to calendar months between January 2010 and December 2023. Lagged values (i.e., 
 ) are constructed by linking transactions of the same apartment unit in 

consecutive months. This dynamic structure enables us to isolate and estimate the 
persistence of price trends across different local markets.

2. Hierarchical Structure and Random Effects

A key innovation of our model lies in its hierarchical structure. We allow the 
momentum coefficient to vary by city and district via the following random effects:

∼   ∼  (2)

Where  and  are hyperparameters capturing the variability of momentum across 

cities and districts, respectively. The inclusion of both  and  allows the model 

to flexibly account for spatial heterogeneity in housing market behavior, consistent 
with the literature on local housing market segmentation (Fingleton, 2008; Gyourko 
& Tracy, 1991).

3. Prior Distributions

All unknown parameters are estimated using Bayesian methods, with the following 
prior distributions:

- Regression coefficients  through  are assigned diffuse normal priors:  , 
allowing for a wide range of plausible values without imposing strong prior beliefs.

- The city-level and district-level momentum effects are modeled as:

∼𝒩    ∼𝒩   (3)
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Which allows for flexible deviations from the global average momentum, while 
maintaining a centered structure.

- For the scale parameters , , and , we use half-Cauchy priors with scale 5:

  ∼HalfCauchy    (4)

Which facilitate regularization with heavy tails, allowing for flexibility in modeling 
variance components and accommodating uncertainty, as recommended in 
hierarchical Bayesian modeling (Gelman, 2006).

These prior choices strike a balance between flexibility and stability, ensuring 
that parameter estimates remain well-behaved in the presence of noisy or sparse 
data at the regional level.2) This hierarchical modeling framework builds on prior 
empirical research on housing price dynamics by enabling region-specific momentum 
effects to be estimated in a statistically coherent manner (Case & Shiller, 1989; 
Fingleton, 2008; Meen, 2001). By integrating unit-level variables and spatially 
structured random effects, the model provides a comprehensive representation of 
localized momentum behavior in the Korean apartment market.

To estimate the model, we employ Markov chain Monte Carlo (MCMC) methods, 
which allow for the estimation of posterior distributions for all model parameters 
based on the observed transaction-level data. Convergence of the sampling process 
is assessed using standard Bayesian diagnostics, including potential scale reduction 

factors () and effective sample sizes, to ensure the reliability of posterior inference. 

III. Data

This study utilizes apartment transaction data from seven major metropolitan areas 
in South Korea: Seoul, Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan. The 
data are sourced through the Open API provided by the Korea Real Estate Board 

2) Estimation results under alternative prior specifications are presented in <Appendix 2>.
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and cover the period from January 2010 to December 2023. Each transaction record 
contains detailed information, including the transaction date, actual transaction price, 
construction year, exclusive area (in square meters), street name, and administrative 
location codes (i.e., city and district).

These transaction-level data offer a high-resolution view of housing market activity, 
enabling monthly tracking of price changes, liquidity conditions, and local 
heterogeneity. The inclusion of geographical identifiers allows for precise spatial 
aggregation, while timestamped pricing data supports the construction of dynamic 
price series at the apartment-unit level. This structure is well suited for identifying 
both aggregate trends and localized momentum effects across the South Korean 
housing market.

1. Identification of Repeatedly Transacted Units

To ensure consistency in unit-level price tracking, we define a homogeneous housing 
unit as a group of transactions sharing the same fixed structural and locational 
attributes. Specifically, we construct a composite identifier based on the apartment 
complex name, street name, exclusive area (in square meters), construction year,3) 
and administrative district code (gu). This combination allows us to approximate 
unit-level consistency in the absence of a true unit ID in the raw data.4) This 
classification strategy enables us to compare price movements for units with stable 
physical and locational characteristics over time.5)

A unit is considered a repeatedly transacted apartment if it appears in the dataset 

3) Observations missing information on construction year are excluded from the analysis 
to ensure consistent unit classification.

4) We do not include more granular attributes such as floor level or building (dong) 
number, as these are frequently missing in the raw data.

5) Although this operational definition does not guarantee perfect homogeneity—differen-
ces such as sub-location within the complex, floor level, interior condition, or building 
orientation may persist—it represents the most practical classification achievable given 
the structure of the publicly available data. Incorporating finer attributes such as floor 
level or specific building (dong) identifiers would lead to excessive segmentation and 
data sparsity, undermining the stability and reliability of the empirical analysis.
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with at least two distinct transaction records across different months during the 
2010–2023 period. This repeat-sales structure is fundamental to capturing within-unit 
price dynamics and controlling for unobserved heterogeneity. After filtering and 
grouping, we identify a total of 31,998 unique apartment units that meet this repeated 
transaction criterion.

2. Monthly Data Construction and Sampling Rule

All analyses are conducted on a monthly frequency.6) For each apartment unit, 
we retain the last transaction observed within each calendar month. This sampling 
rule is designed to capture the most up-to-date market signal for each unit in each 
period, while avoiding distortions that may arise from averaging across heterogeneous 
or sparsely distributed transactions within the same month.7)

Months without any transaction for a given unit are treated as missing. We do 
not impute values for such months—either through last-observation-carried-forward 
(LOCF) or other imputation methods—because doing so may introduce artificial 
persistence or smoothness that does not reflect actual market activity. Furthermore, 
imputation methods inherently rely on assumptions that could introduce additional 
biases, particularly from the choice of the modeling approach. While this strategy 
leads to some degree of temporal sparsity, it helps preserve the integrity of the 
observed transaction process by clearly distinguishing between active and inactive 
periods, without artificially inflating market activity.

6) Model estimation results using data aggregated at annual frequency are reported in 
<Appendix 1>.

7) This sampling strategy is also consistent with standard practice in financial econo-
mics, particularly in the study of momentum effects. In those settings, returns are 
typically calculated using the last observed (closing) price within each period, such 
as month-end prices in equity markets. This convention reflects the prevailing 
market consensus and serves as a meaningful reference point for both investors and 
researchers. Applying a similar logic to housing markets, we interpret the final trans-
action of the month as the closest available approximation to the period-end market 
valuation for a given unit. This approach minimizes distortion due to within-month 
price noise and aligns with the objective of capturing momentum based on the most 
recent price information.
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3. Construction of Unit-Level Control Variables

To account for market liquidity and price uncertainty, we construct two time-varying 
control variables at the unit level: (1) the number of transactions per unit-month 
and (2) price volatility within the unit-month.

- Transaction volume: For each unit and calendar month, we compute the total 
number of recorded transactions. This serves as a measure of liquidity or market 
activity surrounding the unit. Formally, for unit  in month , transaction volume 
is defined as:

      (5)

Where  is the number of distinct transactions recorded for unit  during month 

. While most units transact infrequently, instances of multiple trades within a single 
month do occur and are captured by this measure. A higher value of  reflects 

more active turnover or stronger demand in the submarket.
- Price volatility: For each apartment unit and month, we calculate the SD of 

transaction prices when two or more sales are recorded within that month. For 
unit  in month , the price volatility is defined as:

       (6)

Where  denotes the -th transaction price of unit  in month ,  is the average 

price for that unit in that month, and  is the number of transactions. If   , 
the volatility measure  is set to missing. This conservative rule ensures that the 

volatility reflects genuine within-period price dispersion rather than noise from sparse 
observations.

Together, these covariates serve as critical controls in our empirical model. 
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Transaction volume captures local market liquidity and trading intensity, while price 
volatility reflects the level of uncertainty or dispersion in price signals.

<Table 1> presents the summary statistics of the key variables used in the analysis. 
The average monthly return in apartment prices is approximately 0.65%, with a relatively 
high SD of 10.6 percentage points, indicating considerable variation in short-term 
price movements across units. Trading volume, measured as the log-transformed number 
of monthly transactions, exhibits right-skewed distribution with a median of 1.39 and 
a maximum of 5.71, suggesting that while most properties trade infrequently, a small 
subset experiences much higher turnover. Price volatility, defined as the log-transformed 
SD of within-month transaction prices, has a mean of 7.74 and ranges from 0 to over 
13, reflecting substantial heterogeneity in price dispersion across units and time.

IV. Results

We used four different model specifications to study how previous price changes, 
city and district-specific factors, and other control variables affect housing prices. 
Below are the results from each model, highlighting important parameters like the 
effect of the national-level momentum effect (), city and district-level influences.

1. Model 1: Baseline Model

The baseline model, which only includes lagged home price changes (), gives 

<Table 1> Summary statistics of key variables
Variable Mean SD Min 25 pct Median 75 pct Max

Price change 0.0065 0.1064 –0.2977 –0.0556 0.0067 0.0695 0.3015
Transaction volume 1.4427 0.6497 0.6931 0.6931 1.3863 1.7918 5.7104
Price volatility 7.7438 1.8388 0.0000 7.0832 7.9211 8.5955 13.0148
Note: Price change denotes the monthly rate of change in apartment prices. Transaction 

volume refers to the number of monthly transactions (log-transformed). Price 
volatility computed as the SD of within-month transaction prices for each apart-
ment unit and then log-transformed.
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us an understanding of the momentum effects in the South Korean housing market. 
<Table 2> summarizes the posterior distribution of the model parameters. The 
posterior mean of  is estimated at –0.437, with a narrow 90% highest density interval 

(HDI) ranging from –0.440 to –0.435. The small Monte Carlo standard errors (MCSE) 
and the R-hat value of 1 indicate convergence and reliability of the estimates.

The negative estimate of  indicates that, under the baseline specification, housing 

prices tend to exhibit mean-reverting behavior rather than momentum. Specifically, 
the posterior mean of –0.437 implies that, holding other factors constant, an increase 
in the previous month’s price change is, on average, associated with a decline in 
the current month’s price change. This finding contrasts with the typical expectation 
of momentum effects, where past price changes lead to further increases in the 
following period. Instead, the results imply that periods of rapid price appreciation 
are likely followed by corrections.

This result aligns with previous studies on mean reversion in asset prices but differs 
in its timing. For example, Case & Shiller (1989) found mean-reverting behavior 
in the U.S. housing market, where periods of rapid price growth were followed by 
declines over the long term, driven by market corrections and economic adjustments. 
In contrast, our findings indicate that mean reversion occurs in the short run in 
the South Korean housing market. Similarly, Clayton (1997) suggested that while 

<Table 2> Summary of posterior distributions for Model 1 (baseline)
Parameter Mean SD 5% HDI 95% HDI MCSE mean MCSE SD R-hat

β0 (intercept) 0.0101 0.0002 0.0098 0.0104 0.000002 0.000002 1.00
β1 (national-level 
momentum effect) –0.4371 0.0014 –0.4395 –0.4349 0.000039 0.000028 1.00

σ (residual SD) 0.1059 0.0001 0.1058 0.1061 0.000003 0.000002 1.00
Note: This table reports the posterior summaries for the baseline specification (Model 1). 

The posterior mean and SD represent the central tendency and dispersion of the 
estimated parameters. The 5% and 95% highest density intervals (HDIs) define the 
central 90% credible region for each parameter. Monte Carlo standard errors (MCSE) 
assess the numerical accuracy of the posterior mean and SD estimates. R-hat 
values close to 1 indicate satisfactory convergence across Markov chain Monte Carlo 
(MCMC) chains.
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housing markets might exhibit short-term momentum, long-term price movements 
often revert to fundamental values. The negative lagged price change effect in our 
model suggests that the rapid appreciation of home prices in South Korea may 
prompt immediate corrective phases, highlighting a distinctive market dynamic 
compared to longer-term adjustments observed in other markets.

Although parsimonious, the baseline model accounts for a substantial share of 
the variation in housing price changes through the inclusion of the lagged price 
change variable. However, it leaves unexplained heterogeneity across different cities 
and districts. The posterior estimate for the residual SD () is 0.106, indicating that 
the baseline specification captures some but not all of the dynamics in home price 
changes. This suggests that factors beyond past price changes, such as city-level 
and district-level heterogeneity, may play an important role in shaping housing price 
trajectories in South Korea.

In the following subsections, we extend this baseline model to incorporate spatial 
effects, such as city and district fixed effects, to better account for the observed 
heterogeneity across regions.

2. Model 2: City-Level Momentum Effects

Model 2 extends the baseline specification by introducing city-level response 
parameters (), which capture the heterogeneity in how housing prices in each 

city react to lagged price changes. This allows for a more granular analysis of how 
different urban areas in South Korea experience momentum or mean-reversion effects 
in their housing markets. Summary statistics of the posterior distributions from Model 
2 are presented in <Table 3>.

The posterior distribution for the national-level momentum effect () indicates 

a significant negative relationship between past and current housing price changes. 
The mean estimate of  is –0.44, with a 90% HDI ranging from –0.446 to –0.433, 

reinforcing the evidence for mean reversion. However, we found that the city-level 
responses, captured by the  parameters, show considerable variation across cities: 
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Seoul exhibits a positive city-level effect, with a posterior mean of 0.011, suggesting 
that price changes in Seoul are more likely to partially offset the national 
mean-reverting trend and exhibit localized momentum, potentially driven by sustained 
demand and structural factors such as housing shortages and limited space for new 
home development projects. Busan, Daegu, and Incheon exhibit modest positive 
city-level effects, with posterior means approximately 0.002, indicating mild local 
momentum that partially counteracts the broader national mean-reverting trend. 
In contrast, Gwangju, Daejeon, and Ulsan exhibit negative city-level effects, with 
posterior means ranging from –0.005 to –0.007, indicating that price increases in 
these regions are more likely to be followed by subsequent declines—suggesting 
localized mean reversion, market corrections, or relatively weaker demand conditions.

<Fig. 1> presents the 90% HDIs for the city-level responses to lagged housing price 

<Table 3> Summary of posterior distributions for Model 2 (city-level effects)
Parameter Mean SD 5% HDI 95% HDI MCSE mean MCSE SD R-hat

α[Seoul] 0.0105 0.0048 0.0027 0.0183 0.000118 0.000169 1.00
α[Busan] 0.0022 0.0049 –0.0062 0.0097 0.000182 0.000129 1.00
α[Daegu] 0.0022 0.0052 –0.0056 0.0109 0.000189 0.000133 1.00
α[Incheon] 0.0016 0.0050 –0.0064 0.0099 0.000183 0.000128 1.00
α[Gwangju] –0.0058 0.0053 –0.0142 0.0027 0.000178 0.000122 1.00
α[Daejeon] –0.0073 0.0056 –0.0165 0.0016 0.000174 0.000132 0.99
α[Ulsan] –0.0049 0.0056 –0.0140 0.0039 0.000178 0.000127 1.00
β0 (intercept) 0.0101 0.0002 0.0098 0.0104 0.000003 0.000002 0.99
β1 (national-level 
momentum effect) –0.4397 0.0421 –0.4462 –0.4328 0.000179 0.000127 1.00

σ (residual SD) 0.1059 0.0001 0.1057 0.1061 0.000000 0.000000 0.99
σα (city-level 
momentum effect SD) 0.0093 0.0048 0.0033 0.0155 0.000160 0.000113 1.00

Note: This table reports the posterior summaries for the Model 2. The posterior mean 
and SD represent the central tendency and dispersion of the estimated para-
meters. The 5% and 95% highest density intervals (HDIs) define the central 90% 
credible region for each parameter. Monte Carlo standard errors (MCSE) assess 
the numerical accuracy of the posterior mean and SD estimates. R-hat values 
close to 1 indicate satisfactory convergence across Markov chain Monte Carlo 
(MCMC) chains. The parameter   denotes the city-level momentum effect.
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changes. These intervals represent the uncertainty around the posterior estimates 
of the city-specific parameters in the model. The observed heterogeneity in city-level 
responses () also highlights the importance of local factors in housing market 

dynamics. For example, the stronger positive response observed in Seoul suggests 
that its housing market is characterized by conditions conducive to sustained price 
appreciation, such as strong economic fundamentals, high population density, and 
constrained housing supply. On the other hand, cities like Gwangju and Daejeon 
may be more susceptible to corrections following price surges, reflecting weaker 
demand or a more elastic housing supply. This finding is consistent with the work 
of Meen (2001), who emphasizes the role of regional economic conditions and supply 
constraints in shaping housing price dynamics.

The findings from Model 2 indicate that housing markets in South Korea do not 
all show the same momentum effects. Instead, differences in local economic 
conditions, market-specific characteristics, and regulatory environments contribute 
to varying price dynamics across cities. This discovery has significant policy 
implications, suggesting that efforts to stabilize housing prices may need to be 
customized to the specific conditions of each city, rather than using a one-size-fits-all 
approach. The varying values of  across cities indicate the need for a housing 

<Fig. 1> 90% Highest density interval (HDI) for 
city-level responses to lagged housing price changes
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policy framework that takes into account local supply-demand imbalances, economic 
growth patterns, and housing market conditions.

3. Model 3: City-Level and District-Level Momentum Effects

Model 3 extends the analysis by simultaneously incorporating both city-level 
momentum effects () and district-level effects () nested within each city. This 

specification allows for a more nuanced understanding of housing price dynamics, 
recognizing that regional heterogeneity exists not only between cities but also within 
them. By modeling the effects at both the city and district levels, we account for 
the possibility that housing price behavior differs significantly within a city based 
on local neighborhood characteristics, infrastructure, and economic conditions.

While city-level effects capture broader economic, demographic, and policy factors 
that influence housing markets, district-level effects allow us to capture more localized 
variations that are often masked when only city-level dynamics are considered. For 
instance, within large metropolitan areas like Seoul, districts may vary widely in 
terms of housing supply constraints, socio-economic composition, and development 
potential. Ignoring these district-level variations could lead to an oversimplification 
of the housing price dynamics and misguide policy recommendations.8)

The results presented in <Table 4> demonstrate that the inclusion of district-level 
effects does not significantly alter the overall momentum effects at the city level, 
but it refines our understanding of how prices evolve within cities. The posterior 
mean for  remains consistent with previous models, estimated at –0.439 with a 

90% HDI ranging from –0.446 to –0.432. This persistent negative relationship between 

8) Previous studies, such as Gyourko & Tracy (1991) and Meen (2001) have emphasized 
the importance of considering local heterogeneity in housing markets. Gyourko & 
Tracy (1991) argued that within large cities, significant price differences across 
neighborhoods could result from varying levels of access to amenities, public services, 
and employment centers. Similarly, Meen (2001) highlighted the necessity of under-
standing regional and sub-regional market variations when analyzing housing prices. 
The inclusion of district-level effects in this model enables a more detailed analysis 
and allows us to capture within-city heterogeneity that drives housing price dynamics.
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lagged price changes and current price changes continues to suggest mean reversion.
However, the city-specific parameters () reveal varied responses, as seen in the 

previous model. For example, Seoul exhibits a positive local momentum effect (mean 
estimate: 0.008), suggesting that lagged price changes in Seoul are more likely to 
drive further increases. In contrast, cities like Daejeon and Ulsan show negative 
momentum effects, with posterior means of –0.005, indicating a tendency toward 
mean reversion at the city level.

The consistency of these results across various model specifications increases 
confidence in the core findings. It demonstrates that the introduction of district-level 

<Table 4> Summary of posterior distributions for Model 3: 
City-level and district-level effects

Parameter Mean SD 5% HDI 95% HDI MCSE mean MCSE SD R-hat
α[Seoul] 0.0082 0.0055 –0.0005 0.0169 0.0002 0.0002 1.00
α[Busan] 0.0016 0.0051 –0.0061 0.0103 0.0001 0.0001 1.00
α[Daegu] 0.0017 0.0057 –0.0069 0.0114 0.0002 0.0001 1.01
α[Incheon] 0.0012 0.0054 –0.0077 0.0101 0.0001 0.0001 1.01
α[Gwangju] –0.0029 0.0059 –0.0128 0.0062 0.0002 0.0001 1.00
α[Daejeon] –0.0051 0.0065 –0.0156 0.0044 0.0002 0.0002 1.00
α[Ulsan] –0.0045 0.0063 –0.0145 0.0051 0.0002 0.0002 1.00
β0 (intercept) 0.0101 0.0002 0.0098 0.0103 0.0000 0.0000 1.00
β1 (national-level 
momentum effect) –0.4388 0.0043 –0.4456 –0.4321 0.0001 0.0001 1.00

σ (residual SD) 0.1059 0.0001 0.1057 0.1061 0.0000 0.0000 1.00
σα (city-level 
momentum effect SD) 0.0081 0.0049 0.0006 0.0144 0.0002 0.0001 1.01

σδ (district-level 
momentum effect SD) 0.0123 0.0024 0.0087 0.0164 0.0001 0.0001 1.01

Note: This table reports the posterior summaries for the Model 3. The posterior mean 
and SD represent the central tendency and dispersion of the estimated para-
meters. The 5% and 95% highest density intervals (HDIs) define the central 90% 
credible region for each parameter. Monte Carlo standard errors (MCSE) assess the 
numerical accuracy of the posterior mean and SD estimates. R-hat values close 
to 1 indicate satisfactory convergence across Markov chain Monte Carlo (MCMC) 
chains. The parameter   denotes the city-level momentum effect. Dist-
rict-level momentum effects () are not reported here due to the limited space.
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effects in Model 3 does not substantially change the main estimates for city-level 
momentum effects. The posterior distribution of the residual SD () remains steady 
at 0.106, indicating that the model fit aligns with previous specifications.

Furthermore, the additional variance parameters, such as the SD of city-level 
momentum effects () and district-level effects (), indicate the importance of 

accounting for both levels of heterogeneity. The estimates for  (0.008) and  (0.012) 

suggest that while city-level effects capture significant variation in housing price 
behavior, district-level effects also play a crucial role in explaining local price dynamics. 
Ignoring these nested structures would overlook key aspects of within-city variation.

The results from Model 3 underscore the importance of formulating housing market 
policies that account for both city-level economic conditions and intra-city 
heterogeneity at the district-level. Interventions that target only aggregate city-wide 
indicators may be insufficient to address the diverse patterns of demand-supply 
imbalances and price dynamics observed across districts. The findings highlight the 
need for more granular, location-specific policy measures—particularly in 
metropolitan areas such as Seoul and Busan, where substantial variation exists across 
districts in terms of housing market behavior.

These findings add to the increasing body of literature that stresses the significance 
of multi-level modeling in housing markets. Previous studies have mainly focused 
on macro-level city or regional effects, or have overlooked the nested structure 
of city and district dynamics. By explicitly considering district-level effects, this study 
aligns with more recent literature that supports a more detailed approach to housing 
price analysis, as suggested by Fingleton (2008).

The figures below illustrate the estimated district-level momentum effects () in 

various districts of major South Korean cities. These momentum effects represent 
the district-level responses to previous changes in housing prices, offering insights 
into the different dynamics within each urban area. The colors in the figures indicate 
the strength and direction of the momentum effect, with darker shades showing stronger 
negative effects and lighter shades (or yellow) representing stronger positive effects.

<Fig. 2(a)> displays the momentum effects across Seoul’s districts. The results reveal 
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(a) Seoul (b) Busan

(c) Daegu (d) Incheon

Note: The values displayed in each district represent the posterior means of , the 
district- level momentum effects estimated from Model 3. These coefficients 
capture the marginal responsiveness of housing price changes to past price 
movements at the district-level, controlling for city-level and national trends. 
Higher positive values indicate stronger local momentum effects, while negative 
values reflect mean-reverting dynamics. Units are expressed in percentage 
points.

<Fig. 2> Momentum effects by district for major cities (1/2)
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significant variation within the city, with certain districts like Dongdaemun-gu and 
Jungnang-gu showing strong local positive momentum (posterior mean: 0.0104 and 
0.0119, respectively). On the other hand, Mapo-gu and Jongno-gu exhibit negative 
local momentum effects (posterior mean: –0.0089 and –0.0066, respectively). This 
variation between districts might reflect the diverse economic conditions, demand 
pressures, and housing market regulations across Seoul’s urban areas.

The Busan map (<Fig. 2(b)>) illustrates a similar heterogeneity in momentum effects 
across districts. Haeundae-gu shows the strongest positive local momentum with 
a posterior mean of 0.0212, likely driven by the district’s high desirability. Conversely, 
districts such as Buk-gu and Geumjeong-gu exhibit negative local momentum effects 
(posterior means: –0.0169 and –0.0111, respectively), indicating that these areas are 
more prone to price corrections after periods of price appreciation.

In Daegu (<Fig. 2(c)>), the spatial heterogeneity in housing momentum effects is 
also evident. Seo-gu and Jung-gu exhibit relatively strong positive local momentum 
effects, with posterior means of 0.0098 and 0.0063, respectively, indicating a 
pronounced tendency to counteract the national mean-reverting trend. On the other 
hand, Nam-gu displays a notable negative local momentum effect (–0.0116), signaling 
a higher likelihood of price reversals in this district.

<Fig. 2(d)> presents the momentum effects for Incheon. Districts such as Jung-gu 
and Namdong-gu demonstrate positive local momentum effects (posterior means: 
0.0010 and 0.0017). In contrast, Seo-gu and Gyeyang-gu show negative local 
momentum effects (posterior means: -0.0013 and -0.0016), suggesting a reversion 
in prices after periods of appreciation. The district-level momentum effects in 
Gwangju (<Fig. 3(a)>) reveal that Dong-gu and Nam-gu have positive local momentum 
(posterior means: 0.0047 and 0.0043). On the other hand, Buk-gu and Seo-gu exhibit 
negative local momentum effects (–0.0096 and –0.0060), suggesting that housing 
markets in these areas are more prone to price corrections.

In Daejeon (<Fig. 3(b)>), Jung-gu shows the strongest positive local momentum effect, 
with a posterior mean of 0.0081. In contrast, Daedeok-gu and Yuseong-gu show 
significant negative local momentum (posterior means: –0.0112 and –0.0097). Finally, 
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(a) Gwangju (b) Daejeon

(c) Ulsan
Note: The values displayed in each district represent the posterior means of , the 

district- level momentum effects estimated from Model 3. These coefficients 
capture the marginal responsiveness of housing price changes to past price 
movements at the district-level, controlling for city-level and national trends. 
Higher positive values indicate stronger local momentum effects, while negative 
values reflect mean-reverting dynamics. Units are expressed in percentage points.

<Fig. 3> Momentum effects by district for major cities (2/2)
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in Ulsan (<Fig. 3(c)>), Nam-gu exhibits a positive local momentum effect (posterior 
mean: 0.0035), while Buk-gu and Dong-gu show negative local effects (posterior means: 
–0.0092 and –0.0077). These results suggest that some districts in Ulsan may experience 
price reversion, likely influenced by industrial fluctuations and local economic factors 
that are unique to the city’s heavily industrialized environment.

4. Model 4: City-Level and District-Level Momentum Effects, 
and Other Unit-Level Controls

Model 4 builds on the previous specifications by incorporating additional unit-level 
characteristics, specifically transaction volume and price volatility, alongside the 
existing city- and district-level momentum effects. These added covariates allow 
us to capture more granular dynamics that influence housing prices at a unit level. 
Transaction volume and price volatility provide valuable information about market 
liquidity and uncertainty, both of which are crucial determinants of price movements 
in housing markets. Including these variables helps improve the explanatory power 
of the model by accounting for short-term market fluctuations.9)

The results of Model 4, summarized in <Table 5>, show that the inclusion of 
transaction volume and price volatility does not significantly alter the core findings 

9) The inclusion of transaction volume and price volatility is motivated by their 
well-documented relationship with housing price dynamics in the literature. Trans-
action volume reflects the liquidity of the housing market, which is often an 
important signal of market health. In periods of higher liquidity, housing prices tend 
to increase due to higher demand and more frequent transactions. Ibbotson et al. 
(2013) demonstrated that housing market liquidity can be an important predictor of 
future price movements, as periods of high liquidity tend to coincide with rising 
prices, while reduced transaction volumes often precede price corrections. Similarly, 
price volatility captures the uncertainty and risk associated with housing prices, which 
can significantly influence buyer and seller behavior. Markets with higher volatility 
may see larger price swings, which can deter investment and lead to increased 
speculation. Engle et al. (1987) argued that price volatility serves as a critical factor 
in housing markets by affecting both price predictability and transaction timing. High 
volatility can exacerbate price cycles by amplifying both upward and downward 
movements, leading to more pronounced corrections following periods of growth.
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regarding city- and district-level momentum effects. The posterior mean for the 
national-level momentum effect () remains strongly negative at –0.441, reaffirming 

the mean reversion effect observed in previous models.
The added variables provide additional insights into short-term market dynamics: 

(1) The transaction volume coefficient () is positive with a mean estimate of 0.005 

(90% HDI: 0.004, 0.005), indicating that higher transaction volumes are associated 
with increased housing prices. This result aligns with findings by Genesove & Mayer 
(2001), who showed that periods of high liquidity are often correlated with rising 

<Table 5> Posterior summary of Model 4: Unit-level characteristics
Parameter Mean SD 5% HDI 95% HDI MCSE mean MCSE SD R-hat

α[Seoul] 0.0084 0.0064 –0.0014 0.0184 0.0001 0.0001 1.00
α[Busan] 0.0023 0.0062 –0.0070 0.0129 0.0001 0.0001 1.00
α[Daegu] 0.0049 0.0071 –0.0058 0.0171 0.0001 0.0001 1.00
α[Incheon] –0.0003 0.0064 –0.0118 0.0100 0.0001 0.0001 1.00
α[Gwangju] –0.0032 0.0071 –0.0147 0.0081 0.0001 0.0001 1.00
α[Daejeon] –0.0073 0.0077 –0.0205 0.0034 0.0002 0.0001 1.00
α[Ulsan] –0.0049 0.0074 –0.0177 0.0056 0.0001 0.0001 1.00
β0 (intercept) –0.0097 0.0010 –0.0114 –0.0078 0.0000 0.0000 1.00
β1 (national-level 
momentum effect) –0.4408 0.0051 –0.4470 –0.4338 0.0001 0.0001 1.00

β2 (transaction volume) 0.0049 0.0003 0.0044 0.0054 0.0000 0.0000 1.00
β3 (price volatility) 0.0018 0.0001 0.0016 0.0020 0.0000 0.0000 1.00
σ (residual SD) 0.1058 0.0001 0.1056 0.1060 0.0000 0.0000 1.00
σα (city-level 
momentum effect SD) 0.0098 0.0062 0.0008 0.0173 0.0001 0.0001 1.00

σδ (district-level 
momentum effect SD) 0.0145 0.0026 0.0100 0.0185 0.0001 0.0001 1.01

Note: This table reports the posterior summaries for the Model 4. The posterior mean 
and SD represent the central tendency and dispersion of the estimated para-
meters. The 5% and 95% highest density intervals (HDIs) define the central 90% 
credible region for each parameter. Monte Carlo standard errors (MCSE) assess the 
numerical accuracy of the posterior mean and SD estimates. R-hat values close 
to 1 indicate satisfactory convergence across Markov chain Monte Carlo (MCMC) 
chains. The parameter    denotes the city-level momentum effect. Dist-
rict-level momentum effects () are not reported here due to the limited space.
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prices due to increased demand and market activity. (2) The price volatility coefficient 
() is also positive, with a mean estimate of 0.002, suggesting that higher price 

volatility is associated with price increases. This finding is in line with the argument 
that volatility creates uncertainty, which can drive speculative behavior, leading 
to more rapid price changes (Engle et al., 1987).

At the city level, the momentum effects () continue to exhibit heterogeneity 
across cities. Seoul exhibits a positive momentum effect, with a posterior mean 
of 0.008, suggesting that price increases in the city are more likely to persist over 
time, thereby counteracting the broader national tendency toward mean reversion. 
Conversely, cities such as Daejeon and Ulsan display negative momentum effects 
(posterior means: –0.007 and –0.005, respectively), suggesting a higher likelihood 
of price corrections following initial price increases.

One of the key strengths of Model 4 is that the inclusion of additional unit-level 
characteristics does not undermine the robustness of the core momentum effects 
observed at both the city and district levels. The national-level momentum effect 
remains consistently negative across all specifications, supporting the argument for 
mean reversion in housing prices. The inclusion of transaction volume and price 
volatility enriches the model by accounting for short-term liquidity and risk factors 
that drive housing market fluctuations.

The empirical advantages of this extended specification are further supported by 
model comparison results. <Fig. 4> shows the WAIC-based model comparison across 
four competing specifications. Model 4, which includes city- and district-level random 
effects along with unit-level controls, achieves the highest ELPD value, indicating 
the best out-of-sample predictive performance. Models 3 and 2 show modest declines 
in fit, while Model 1 performs the worst. The clear separation in ELPD values suggests 
that incorporating multi-level structure and housing-specific covariates improves the 
model’s ability to capture systematic momentum patterns in housing prices.

5. Posterior Distributions of City-Level Momentum Coefficients

To further investigate regional heterogeneity in housing price dynamics, we report 
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the combined city-specific momentum coefficients (  ) from Model 4 across 

seven major metropolitan housing markets. These composite estimates capture the 
responsiveness of the current month’s rate of price change to that of the previous 
month—interpreted as the approximate percentage point change in the current rate 
of price growth associated with a 1% change in the prior month. This formulation 
enables the identification of region-specific patterns of momentum or mean reversion 
in housing market behavior.

<Fig. 5> displays the posterior densities of the composite term,   , where  
is the national-level momentum effect and  captures city-specific effect. In our 

results, all cities show negative posterior means, suggesting that mean reversion 
dominates overall. Seoul exhibits the weakest mean reversion (closest to zero), while 
Daejeon and Ulsan exhibit the strongest reversion effects. These variations indicate 
spatially distinct housing market behaviors that are not captured by aggregate national 
models.

Note: Higher values of expected log predictive density (ELPD) indicate better model fit. 
Model 4 yields the highest ELPD, followed by Models 3, 2, and 1 in descending 
order. The plot displays both the point estimates (open circles) and associated 
SEs (horizontal bars) for each model’s ELPD. Triangular markers indicate the ELPD 
difference from the top-ranked model. Model 4 significantly outperforms other 
specifications in terms of predictive accuracy.

<Fig. 4> Model comparison using widely applicable information criterion (WAIC)
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<Fig. 5> Posterior densities of city-level momentum coefficients (  )
<Table 6> summarizes the posterior means and 90% HDIs for each city’s momentum 

coefficient. These values quantify the degree of responsiveness of current housing 
price changes to past changes, along with the associated uncertainty in each 
city-specific estimate.

<Table 6> Posterior summary of approximate elasticity (  ) by city
City Mean 5% HDI 95% HDI

Seoul −0.4324 −0.4396 −0.4253
Busan −0.4385 −0.4463 −0.4304
Daegu −0.4358 −0.4453 −0.4258
Incheon −0.4405 −0.4497 −0.4319
Gwangju −0.4438 −0.4559 −0.4333
Daejeon −0.4481 −0.4617 −0.4364
Ulsan −0.4457 −0.4584 −0.4352
Note:    measures the persistence of monthly housing price changes in each city. 

Higher positive values indicate momentum, while negative values imply mean 
reversion. All cities show negative values, consistent with the presence of 
corrective price dynamics. HDI refers to high density interval. Units are expressed 
in percentage points.
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6. Spatial Autocorrelation in Momentum Effects across Cities 
and Districts

Building on the regional heterogeneity identified in the previous sections, we now 
assess whether spatial patterns are present in the distribution of housing price 
momentum effects by computing Moran’s I statistics at both the city and district 
levels. Moran’s I (i.e., Moran, 1950) is a widely used global indicator of spatial 
dependence, measuring whether areas with similar values of a variable—here, 
estimated momentum coefficients—tend to be geographically clustered or dispersed. 
A significantly positive Moran’s I suggests spatial clustering of similar momentum 
effects, potentially reflecting regional spillovers or shared local dynamics. Conversely, 
a significantly negative value implies spatial dispersion, which may be interpreted 
as local divergence or competitive substitution between neighboring regions 
(Burchfield et al., 2006; Glaeser et al., 2005; Han & Strange, 2015).

<Table 7> presents the Moran’s I estimates, the expected values under the null 
hypothesis of spatial randomness, and associated p-values derived from permutation 
tests. At the city level, the Moran’s I is estimated at –0.2718, which is more negative 
than the theoretical expectation of –0.1667under spatial randomness. However, the 
result is not statistically significant (p=0.439), indicating that momentum effects do 
not exhibit meaningful spatial autocorrelation across cities. This suggests that 
city-level variation in momentum effects is largely idiosyncratic and not spatially 
structured, potentially reflecting differences in local policy regimes, demographic 
compositions, or housing supply elasticity that are not spatially contiguous.

At the district-level, spatial autocorrelation is generally weak across most 
metropolitan areas. Moran’s I values for Seoul, Incheon, Busan, Daejeon, Gwangju, 
and Ulsan are close to zero or moderately negative and statistically insignificant. 
These findings imply that, within these cities, district-level momentum effects do 
not demonstrate strong spatial clustering. Such results may be attributed to the relatively 
small number of spatial units (i.e., districts), limited spatial granularity of the effects, 
or heterogeneous intra-city housing dynamics that dilute broader spatial patterns.
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<Table 7> Moran’s I statistics for momentum effects across cities and districts
Region Moran’s I Expected I under null p-value

Across cities −0.2718 −0.1667 0.439
Across districts
Seoul 0.0485 −0.0417 0.224
Busan −0.0614 −0.0667 0.458
Daegu −0.2949 −0.1429 0.018
Incheon −0.0234 −0.1250 0.215
Daejeon −0.3394 −0.2500 0.246
Gwangju −0.3333 −0.2500 0.153
Ulsan −0.2266 −0.2500 0.347

Note: Moran’s I measures spatial autocorrelation in estimated momentum effects. For 
the construction of spatial weights, the number of nearest neighbors was set to 
k=4 by default. In cases where the number of spatial units was limited (e.g., 
Ulsan, Daejeon, and Gwangju), the number of neighbors was set to k=3 to ensure 
a valid weight matrix.

An important exception is Daegu, where the Moran’s I is significantly negative 
at –0.2949 (p=0.018), revealing strong spatial heterogeneity. This implies that districts 
with above-average momentum effects are likely to be surrounded by districts with 
below-average effects, and vice versa. Such local divergence may reflect sharp 
differences in neighborhood-level fundamentals, such as redevelopment intensity, 
school quality, or localized investment behavior. The presence of spatial dispersion 
within Daegu underscores the importance of modeling intra-urban dynamics 
explicitly when designing policy interventions or forecasting price dynamics at 
sub-city scales.

V. Tests on Momentum Strategies in the Korean 

Housing Market

This study examines the momentum trading strategy described by Jegadeesh & 
Titman (1993) in the context of the South Korean housing market to assess its 
effectiveness. The strategy involves forming portfolios based on the historical perfor-
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mance of properties, buying those that have recently performed well ("winners"), 
and short-selling those that have underperformed ("losers"). A distinguishing aspect 
of this study is the consideration of real-world frictions such as capital gains taxes 
and transaction fees, which are significant in the housing market. By factoring in 
these elements, the study offers a more practical assessment of the strategy’s potential 
profitability.

The dataset used contains monthly transaction-level records for apartment 
properties in major cities across South Korea, including Seoul, Busan, Daegu, Incheon, 
Gwangju, Daejeon, and Ulsan. The data spans from January 2015 to December 2023. 
Unlike the continuous trading of stocks in equity markets, the housing market data 
forms an unbalanced panel due to irregular transaction frequencies. This means 
that some properties are bought and sold multiple times, while others are infrequently 
traded. This unbalanced nature presents a challenge for momentum strategy analysis, 
as it requires careful handling of gaps in transaction history.

To address this, we calculate the cumulative returns for each unit only using the 
months in which transactions are recorded. This helps to avoid biases that can be 
introduced by inactive periods. By concentrating on active transaction months, the 
study ensures that the momentum signals are based on genuine market activity rather 
than artificially smoothed data. This approach gives a more accurate measure of 
historical performance, reflecting the true trading opportunities available to investors.

1. Momentum Strategy: Formation and Holding Periods

The momentum strategy is implemented by forming portfolios at the end of each 
month based on the cumulative returns of properties over a formation period, , 
and holding them for a specified holding period, . Both  and  are varied 

to capture different market dynamics. The formation period (e.g., 3, 6, 9, or 12 
months) is used to identify momentum signals, while the holding period (e.g., 3, 
6, 9, or 12 months) allows us to test the persistence of these signals.
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The cumulative return for property  over the formation period is calculated as:

    (7)

Where   is the monthly return of unit  in month . This compounding captures 

the multiplicative effects of gains and losses over time, providing a robust measure 
of past performance.

At the end of each formation period, housing units are ranked based on their 
cumulative returns. The top-performing units (i.e., top 10 percentile) are grouped 
into a "winner" portfolio, while the bottom performers (i.e., bottom 10 percentile) 
constitute the "loser" portfolio. During the subsequent holding period, these portfolios 
are held, and their performance is tracked. This procedure is repeated monthly, 
generating a time series of returns for both winner and loser portfolios, which allows 
us to evaluate the strategy’s effectiveness across different market conditions.

2. Accounting for Taxes and Transaction Fees

An important expansion of this study compared to Jegadeesh & Titman (1993) 
is the consideration of taxes and transaction fees, both of which have a substantial 
impact on the profitability of real estate investments. In the Korean housing market, 
these costs are significant and can vary based on market conditions and the size 
of the transaction.

The South Korean government imposes a progressive tax on capital gains, based 
on the year of the transaction and the amount of the gain. We have implemented 
a detailed tax structure to determine the net return for investments in residential 
properties. The tax structure for housing properties is outlined in <Table 8>, 
demonstrating the progressive nature of the tax system.

For each transaction, the capital gain for property  is calculated as:

     (8)
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Where  represents the sale price at the end of the holding period, and  
represents the purchase price at the beginning of the formation period. The tax 
structure is then used to apply the applicable tax rate and deduction in order to 
compute the tax amount.

Tax Tax rate×Capital gain Deduction (9)

This tax calculation ensures that the simulated net returns reflect the actual costs 
investors would face, providing a realistic measure of post-tax performance. In 
addition to taxes, real estate transactions incur various fees, such as brokerage 
commissions and legal costs. We model these fees as a fixed percentage,   , 
of the transaction price. The total transaction fee for property  is expressed as:

Transaction fee   ×  (10)

<Table 8> Capital gains tax rates and deductions in South Korea
After 2014 After 2017 After 2018 After 2021

Capital gain 
bracket
(KRW)

Tax 
rate
(%)

Deduction 
(million 
KRW)

Tax 
rate 
(%)

Deduction
(million 
KRW)

Tax 
rate 
(%)

Deduction
(million 
KRW)

Tax 
rate 
(%)

Deduction
(million 
KRW)

Up to 12 million 6 - 6 - 6 - 6 -
Up to 46 million 15 1.08 15 1.08 15 1.08 15 1.08
Up to 88 million 24 5.22 24 5.22 24 5.22 24 5.22
Up to 150 million 35 14.9 35 14.9 35 14.9 35 14.9
Over 150 million 38 19.4 38 19.4 38 19.4 38 19.4
Up to 500 million - - 40 29.4 - - 40 25.4
Over 500 million - - - - - - 42 35.4
Up to 1 billion - - - - - - - -
Over 1 billion - - - - - - - -
Note: 1) The tax rates and deductions have evolved over different periods in South 

Korea, reflecting changes in government policies. The brackets and rates 
presented correspond to the regulations effective at the specified times.

2) ‘-‘ indicates that the bracket or deduction was not applicable during that period.
Source: National Tax Service.
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3. Simulation and Evaluation

We conducted simulations using various combinations of formation () and holding 

periods () to examine how the momentum effect is influenced by the investment 

horizon and reference point. The primary outcome of these simulations is the average 
net return, which signifies the effectiveness of the strategy after accounting for taxes 
and fees.

The heatmap in <Fig. 6> demonstrates the performance of momentum strategies 
in the housing market, considering various formation and holding periods. The results 
indicate that all tested combinations of formation and holding periods resulted in 
negative returns. Notably, strategies with short formation and holding periods 
exhibited the most significant negative returns. This suggests that when momentum 
strategies rely on a brief historical period for portfolio formation and execute trades 
over a short duration, transaction costs, and taxes significantly erode potential gains. 
The high turnover inherent in these short-term strategies amplifies the impact of 
fees and taxes, leading to a rapid decline in net returns.

This pattern contrasts with findings from more liquid markets, such as equities, 
where momentum strategies often capitalize on short-term price trends (Asness et 
al., 2013; Jegadeesh & Titman, 1993). The negative results in the housing market 
underscore the unique challenges posed by real estate investments, including lower 
liquidity, higher transaction costs, and the relatively slow adjustment of prices. These 
market-specific factors impede the success of momentum strategies, especially when 
high-frequency trading is involved.

Interestingly, as both the formation and holding periods extend, the magnitude 
of negative returns diminishes, although they remain negative overall. This trend 
indicates that longer formation periods may allow for a more accurate capture of 
underlying price momentum in the housing market, and extended holding periods 
help mitigate the adverse effects of repeated transaction costs. However, even with 
these adjustments, the momentum strategy does not produce positive returns when 
taxes and fees are factored in.
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<Fig. 6> Return of momentum strategy

In summary, the analysis suggests that using traditional momentum strategies in 
the Korean housing market is significantly limited by the market’s structural 
characteristics. The consistent negative returns, especially in short-term strategies, 
emphasize the need for investors to reconsider using momentum-based approaches 
in real estate.

4. Simulation under the Short-Sale Constraints

In this section, we are examining the performance of momentum strategies while 
considering the constraint that short sales are not allowed. This adjustment reflects 
a more realistic scenario for many housing markets, including South Korea, where 
short-selling properties are either legally restricted or practically infeasible due to 
high transaction costs, market regulations, and the illiquid nature of real estate assets. 
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By excluding short positions from our strategy, we aim to assess the effectiveness 
of momentum trading when investors are limited to long-only positions.

In the traditional momentum strategy, both "winners" (top-performing assets) and 
"losers" (bottom-performing assets) are included in the portfolio, with investors taking 
long positions in the winners and short positions in the losers. To modify this strategy 
for a long-only framework, we adjust the portfolio construction as follows:

- At the end of each formation period, properties are ranked based on their 
cumulative returns. The properties in the top quantile (e.g., top 10%) are selected 
as "winners," and the investor takes long positions in these properties.

- Instead of shorting the "losers," the strategy simply avoids taking any position 
in the bottom-ranked properties. This means the portfolio is composed solely 
of long positions in the winner properties, eliminating the potential profits (or 
losses) from short positions.

This adjustment creates a momentum strategy that focuses on purchasing properties 
with a strong historical performance. Instead of potential short positions, the strategy 
involves holding cash or risk-free assets. However, because short-selling is not an 
option, the strategy’s ability to hedge against market downturns is limited, which 
affects the risk-return profile of the portfolio.

The performance of the long-only momentum strategy is evaluated across different 
combinations of formation and holding periods, similar to the standard momentum 
strategy. The heatmap in <Fig. 7> illustrates the performance of the momentum 
strategy when short-selling is not permitted.

One important difference in this heatmap is the generally more negative returns 
seen across almost all combinations of formation and holding periods compared 
to the earlier results. Returns become increasingly negative as both the formation 
and holding periods get longer. For instance, the returns for longer formation periods 
(9 to 12 months) and holding periods (8 to 12 months) drop below –0.10, indicating 
a more significant decrease in returns in these cases. This suggests that when 
short-selling is restricted, extending the formation and holding periods leads to 
progressively worse performance of the momentum strategy in the housing market.
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<Fig. 7> Return of momentum strategy: Under no short-sales

The exclusion of short-selling in the previous heatmap resulted in more noticeable 
negative outcomes compared to when both long and short positions were considered. 
The earlier results showed less severe negative returns, especially for shorter formation 
and holding periods. This suggests that including short positions may have helped 
counter some of the adverse effects. Without the ability to short-sell, the strategy 
lacks flexibility to hedge against potential market downturns, leading to more 
pronounced underperformance.

Additionally, the heatmap shows that even with shorter formation periods (3 to 
5 months) and shorter holding periods, the returns are still negative, though not 
as steep as with longer-term strategies. This suggests that simply holding onto winning 
investments without the ability to sell losing investments short does not lead to positive 
returns in the housing market. The adverse effects of transaction fees and taxes 
are more noticeable in this long-only strategy, emphasizing that these costs have 
a significant impact on net returns.

The analysis results offer important insights into the difficulties of using momentum 
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strategies in the Korean housing market. This is especially true when taking into 
account market frictions like taxes, transaction fees, and the inability to short-sell. 
Regardless of the different formation and holding periods, the momentum strategy 
mostly results in negative returns. This suggests that the dynamics of the housing 
market are quite different from more liquid markets such as equities, where momentum 
strategies have historically been more effective.

To further explore the policy relevance of these findings, we extend the analysis 
by evaluating the effect of a tax increase on momentum-based investment returns 
in the following subsection.

5. Simulation under the Increased Tax Rate

To investigate how housing-related tax policy affects investment returns, we 
simulate the momentum strategy under a 25 basis point (bps) increase in the capital 
gains tax schedule. The simulation assumes a long-only portfolio without short-sales 
and includes realistic transaction. <Fig. 8> reports the average returns across various 
formation and holding period combinations.

Compared to the baseline case without a tax increase (<Fig. 7>), the introduction 
of a higher tax burden leads to a consistent decline in post-tax momentum returns 
across all parameter configurations. The magnitude of this decline increases with 
the holding period, reflecting the cumulative impact of taxation over time. For 
example, when using a 12-month formation period and a 12-month holding period, 
the average return decreases from –0.1104 in the baseline case to –0.1111 under 
the tax hike scenario. Although numerically modest, this reduction accumulates over 
time and can significantly alter the profitability of housing investment strategies.

These results highlight the importance of incorporating policy-induced frictions 
into the evaluation of asset return dynamics. Tax increases, even if moderate, erode 
momentum-based profits and can partially offset behavioral pricing anomalies in the 
housing market. We note that further extensions—such as differentiated tax treatments 
by holding period—could yield richer implications and are left for future work.
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<Fig. 8> Return of momentum strategy: Under no short-sales and 
25 bps increase in tax rate

VI. Conclusion and Policy Implications

This study provides a comprehensive analysis of momentum effects in South Korea’s 
housing market using monthly transaction-level data and a Bayesian hierarchical 
framework. By accounting for both city- and district-level heterogeneity, the study 
highlights how momentum patterns differ across regions and how these patterns 
interact with factors such as market liquidity, price volatility. The results have 
important implications for housing market policy and investment strategy.

From a policy perspective, our findings underscore the need for regionally 
differentiated interventions. Although the national average suggests a mean-reverting 
tendency in price dynamics, cities such as Seoul exhibit relatively strong momentum 
effects that partially offset this trend. These localized deviations suggest that blanket 
policy measures may be insufficient or even counterproductive. Instead, more targeted 
approaches—such as differential loan-to-value (LTV) or debt-to-income caps, 
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tailored tax incentives, or localized housing supply initiatives—could more effectively 
address region-specific market pressures. For example, districts with strong upward 
momentum and limited supply could benefit from regulatory measures to expand 
housing availability or dampen speculative demand. Conversely, regions with weaker 
or mean-reverting dynamics may require less aggressive intervention.

Our simulation results provide additional policy insight by demonstrating that 
momentum-based investment strategies yield negative or near-zero net returns once 
real-world frictions, such as transaction fees and capital gains taxes, are considered. 
This finding suggests that existing tax structures and market frictions already serve 
as effective constraints on speculative trading behavior. Therefore, in regions where 
momentum is still observed despite these frictions—such as parts of Seoul—
policymakers may need to consider complementary tools such as targeted supply-side 
measures or more aggressive taxation to curb excessive price persistence.

Moreover, the ineffectiveness of momentum strategies under short-sales constraints 
highlights the structural limitations of Korea’s housing market in facilitating arbitrage 
and timely price correction. This suggests that in the absence of mechanisms to 
offset overvaluation—such as short-selling or more dynamic trading instruments—
policy interventions may play a more critical role in mitigating excessive price 
persistence and ensuring market stability.

Despite its contributions, this study has several limitations that offer avenues for 
future research. First, our definition of homogeneous housing units relies on 
observable characteristics—such as apartment name, exclusive area, and construction 
year—due to the absence of unique unit identifiers in publicly available data. This 
approach may introduce measurement error that could attenuate estimates of 
momentum or mean-reverting effects. Future work could address this limitation by 
leveraging administrative or proprietary datasets with finer unit-level resolution.

Second, although we examine spatial autocorrelation ex post using Moran’s I, 
we do not incorporate spatial priors such as conditional autoregressive (CAR) or 
intrinsic CAR structures into the model due to computational constraints. Extending 
the hierarchical Bayesian framework to include spatially structured priors would 
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allow for a more rigorous estimation of spatial spillovers in housing price dynamics.
Third, while we conduct a simulation to evaluate the impact of a capital gains 

tax increase, our analysis does not fully examine the broader array of policy 
instruments—such as differentiated capital gains tax schedules based on holding 
periods, property tax reforms, region-specific LTV caps, or targeted housing supply 
interventions—that could more comprehensively inform strategies for stabilizing the 
housing market. Expanding the policy simulation framework to include these levers 
represents a promising direction for applied policy research.

Fourth, although we document substantial spatial heterogeneity in momentum 
effects across cities and districts, we do not empirically identify the structural drivers 
behind these variations. A deeper examination of factors such as institutional 
constraints, infrastructure access, demographic composition, or speculative activity 
would enhance our understanding of regional dynamics and improve the 
generalizability of policy recommendations.

Finally, in constructing the monthly panel dataset, we adopt a within-month LOCF 
rule to define end-of-month housing prices. While this approach reduces spurious 
temporal correlations, it also necessitates the exclusion of units with sparse trading 
histories, potentially biasing the sample toward more liquid units. Future research 
could explore imputation-based or model-based approaches to more flexibly address 
sparsity in transaction timing, thereby improving the representativeness of the 
analysis.

Taken together, these findings contribute to a more granular understanding of 
housing price dynamics in a non-Western context and provide a foundation for 
future research on spatially targeted housing policy design.
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<Appendix 1> Estimation Results with Data at 

Annual Frequency

This section presents the estimation results of all model specifications using data 
on an annual basis. In contrast to the main analysis, which utilized monthly data, 
this part examines how the change in data frequency impacts the estimation of 
momentum effects in housing prices and the robustness of the main findings. The 
results of the five model specifications, ranging from the baseline to the fully specified 
model integrating the unit-level controls, are summarized in <Appendix Table 1>.

The annual data results reveal notable differences from the monthly data, 
particularly in the direction and strength of the momentum effects in cities like 
Busan and Daegu. While some cities exhibit consistent momentum trends across 
both frequencies, Busan and Daegu display contrasting patterns, indicating that the 
observation period can influence the perceived market dynamics.

For instance, the city of Seoul consistently shows a positive momentum effect 
in both monthly and annual analyses. However, the effect appears slightly stronger 
in the annual data (    in Model 4) compared to the monthly analysis. 
This consistent positive momentum suggests that housing prices in Seoul tend to 
counteract the national-level mean-reverting pattern. The effect likely reflects 
underlying market fundamentals such as sustained demand pressures and structural 
supply constraints. The stronger magnitude observed in the annual data may capture 
the influence of long-term drivers of price growth, further underscoring persistent 
upward momentum in large metropolitan housing markets.

In the case of Busan, the estimated momentum effect exhibits frequency-dependent 
behavior. While the monthly data suggest a positive city-level deviation, the effect 
becomes negative when evaluated at the annual frequency (e.g.,     
in Model 4). This pattern implies that although short-term price dynamics in Busan 
may reflect localized momentum, the longer-term trends reveal a tendency toward 
mean reversion or price correction. The shift from positive to negative momentum 
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at lower temporal resolution may reflect the aggregation and smoothing of short-term 
fluctuations, thereby uncovering underlying corrective forces that are obscured at 
higher frequencies.

Daegu presents a notable case of frequency-dependent variation in momentum 
effects. While the monthly data indicate a positive city-level momentum effect, the 
annual analysis reveals a reversal, with a more pronounced negative estimate 
(     in Model 4). This shift suggests that although short-term dynamics 
in Daegu’s housing market may exhibit localized momentum, over longer horizons, 
there is a stronger tendency for prices to revert toward fundamental values. The 
contrast between short- and long-term behavior highlights the presence of 
mean-reverting forces that become more pronounced when price movements are 
aggregated over time, a pattern consistent with the findings of (Choi, 2024).

Incheon, Gwangju, Daejeon, and Ulsan all exhibit negative city-level momentum 
effects in both the monthly and annual models, indicating a consistent tendency 
toward price correction across time frequencies. For Incheon, the effect is slightly 
more negative in the annual data (   ) than in the monthly model 
(   ), pointing to a subtle intensification of mean reversion over 
longer periods. Gwangju similarly shows a negative effect in both cases, with values 
of   (monthly) and   (annual). Daejeon’s momentum estimates are 
negative in the monthly model (   ) but switch to slightly positive 
in the annual specification (   ) in Model 4, suggesting weak or 
mixed dynamics that are not robust across frequencies. Ulsan displays consistently 
negative effects, with estimates of   (monthly) and  (annual), reinforcing 
the pattern of mean-reverting behavior in this market.

The comparison between monthly and annual frequency results is in line with 
the broader literature on housing market analysis. According to Case & Shiller (1989) 
and Glaeser & Nathanson (2015), monthly data capture short-term price movements 
and market volatility, while annual data tend to reflect broader market adjustments 
and long-term trends. The reversal in momentum effects for cities like Busan and 
Daegu in annual data emphasizes the presence of mean reversion over a longer 
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time period. On the other hand, Seoul’s persistent positive momentum effect in 
annual data highlights the city’s strong housing market.

The annual data gives us a deeper understanding of the dynamics of housing markets 
that may not be fully captured in monthly analyses. The smoothing of short-term 
fluctuations in annual observations helps uncover underlying trends and corrections, 
emphasizing the importance of data frequency in interpreting housing price dynamics.

<Appendix Table 1> Comparison of model specifications with annual observations

Parameter Model 1 Model 2 Model 3 Model 4
β0 (intercept) 0.031* 0.030* 0.030* –0.003*

β1 (national-level momentum effect) –0.092* –0.132* –0.140* –0.145*

β2 (transaction volume) 0.017*

β3 (price volatility) –0.001

α[Seoul] 0.143 0.146 0.155

α[Busan] –0.021 –0.026 –0.025

α[Daegu] –0.031 –0.025 –0.028

α[Incheon] –0.032 –0.025 –0.029

α[Gwangju] –0.028 –0.023 –0.025

α[Daejeon] –0.005 –0.003 0.004

α[Ulsan] –0.053 –0.045 –0.046

σ (residual SD) 0.208 0.207 0.207 0.207

σα (city-level momentum effect SD) 0.086 0.087 0.091

σδ (district-level momentum effect SD) 0.040 0.037

Note: Values marked with an asterisk (*) indicate that the 90% highest density interval 
(HDI) does not contain zero for the corresponding parameter estimate. The para-
meter    denotes the city-level momentum effect. District-level momentum 
effects () are not reported here due to the limited space.
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<Appendix 2> Results under Alternative Priors

This appendix presents the estimation results of all model specifications using 
monthly data under different prior distribution specifications. In the context of 
Bayesian estimation, the choice of priors can significantly influence the results, 
particularly when dealing with complex models such as those involving hierarchical 
structures and varying levels of housing market effects. To assess the robustness 
of our findings, we apply different prior distributions to the parameters in our models, 
summarized in <Appendix Table 2>.

In these models, for the parameters , , and  (i.e., coefficients related to the 
national-level momentum effect, city-level effects, and district-level effects, 
respectively), we use a Student t distribution as the prior. This choice provides a 
more robust approach by allowing for heavier tails in the distribution, which helps 
mitigate the influence of extreme values or outliers.

For the scale parameters (e.g., , , and ), we assume an inverse gamma 

distribution. The inverse gamma is commonly used in Bayesian analysis to model 
variance components, as it ensures positive values and incorporates prior beliefs 
about the dispersion of parameters.

The models estimated in this appendix follow the same structure as described 
in the main analysis, but with different prior settings. The results for each model 
specification, from the baseline (Model 1) to the full model incorporating unit-level 
control variables (Model 4), are based on monthly data.

The comparison between <Table 5> and <Appendix Table 2> reveals a high degree 
of consistency in key parameter estimates across alternative prior specifications, 
reinforcing the robustness of the model’s core findings. Despite differences in the 
specification of priors—<Table 5> reflecting the default settings and <Appendix Table 
2> employing Student- and inverse-gamma priors—the national-level momentum 
effect () remains remarkably stable. Across all models in <Appendix Table 2>,  
ranges narrowly between  and  , which closely aligns with the estimate 
reported in <Table 5> (  ). This consistency confirms that the observed 
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mean-reverting behavior in housing price changes is not an artifact of prior choice 
but a robust feature of the data.

City-level momentum effects () also exhibit broadly similar patterns under different 

priors. For example, Seoul consistently displays a positive deviation from the national 
trend, with estimates of 0.0084 (<Table 5>) and between 0.012–0.016 (<Appendix 
Table 2>). Likewise, cities such as Daegu and Busan maintain modestly positive effects, 
while Daejeon and Ulsan remain negative across both tables. Although minor 
fluctuations are observed—for instance, Incheon’s estimate is slightly negative in 
<Table 5> and marginally positive in <Appendix Table 2>—these differences are modest 
and within the expected bounds of posterior uncertainty.

<Appendix Table 2> Posterior summary under alternative priors

Parameter Model 1 Model 2 Model 3 Model 4

β0 (intercept) 0.01* 0.01* 0.01* –0.013*

β1 (national-level momentum effect) –0.437* –0.441* –0.444* –0.441*

β2 (trading volume) 0.006*

β3 (price volatility) 0.002*

α[Seoul] 0.013 0.016 0.012

α[Busan] 0.004 0.011 0.006

α[Daegu] 0.004 0.009 0.007

α[Incheon] 0.003 0.008 0.008

α[Gwangju] –0.006 0.001 –0.001

α[Daejeon] –0.009 –0.007 –0.008

α[Ulsan] –0.006 –0.006 –0.009

σ (residual SD) 0.106 0.106 0.106 0.106

σα (city-level momentum effect SD) 0.288 0.284 0.285 0.289

σδ (district-level momentum effect SD) 0.042 0.043

Note: Values marked with an asterisk (*) indicate that the 90% highest density interval 
(HDI) does not contain zero for the corresponding parameter estimate. The para-
meter    denotes the city-level momentum effect. District-level momentum 
effects () are not reported here due to the limited space.
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The SDs of the random effects ( and ) further support the robustness of the 

inferred spatial heterogeneity. While the absolute values differ due to differences 
in prior specification and scale, the estimates from <Table 5> (  ,   ) 
are not substantially divergent from those reported in Model 4 of <Appendix Table 
2> (  ,   ). These results suggest that the qualitative pattern of spatial 

variation remains broadly consistent and is not highly sensitive to the choice of 
prior distribution.

In sum, the overall convergence of results across <Table 5> and <Appendix Table 
2> demonstrates that the central empirical conclusions—particularly the presence 
of a negative national-level momentum effect and meaningful regional variation—are 
robust to the choice of prior distribution. This enhances the credibility of the model’s 
findings and supports their application in policy and empirical research.


